Measure theoretic geometry and elliptic variational problems
نویسندگان
چکیده
منابع مشابه
A Measure-Theoretic Variational Bayesian Algorithm for Large Dimensional Problems
In this paper we provide an algorithm allowing to solve the variational Bayesian issue as a functional optimization problem. The main contribution of this paper is to transpose a classical iterative algorithm of optimization in the metric space of probability densities involved in the Bayesian methodology. The main advantage of this methodology is that it allows to address large dimensional inv...
متن کاملMass problems and measure-theoretic regularity
A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an Fσ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies’s notion of LR-reducibility. We bu...
متن کاملVariational Methods for Nonlinear Elliptic Eigenvalue Problems
In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...
متن کاملGraph-Theoretic Solutions to Computational Geometry Problems
Many problems in computational geometry are not stated in graphtheoretic terms, but can be solved efficiently by constructing an auxiliary graph and performing a graph-theoretic algorithm on it. Often, the efficiency of the algorithm depends on the special properties of the graph constructed in this way. We survey the art gallery problem, partition into rectangles, minimum-diameter clustering, ...
متن کاملIntegral geometry – measure theoretic approach and stochastic applications
Integral geometry, as it is understood here, deals with the computation and application of geometric mean values with respect to invariant measures. In the following, I want to give an introduction to the integral geometry of polyconvex sets (i.e., finite unions of compact convex sets) in Euclidean spaces. The invariant or Haar measures that occur will therefore be those on the groups of transl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1969
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1969-12145-2